459 research outputs found

    Stochastic Resonance Activity Influences Serum Tryptophan Metabolism in Healthy Human Subjects

    Get PDF
    Background Stochastic resonance therapy (SRT) is used for rehabilitation of patients with various neuropsychiatric diseases. An alteration in tryptophan metabolism along the kynurenine pathway has been identified in the central and peripheral nervous systems in patients with neuroinflammatory and neurodegenerative diseases and during the aging process. This study investigated the effect of SRT as an exercise activity on serum tryptophan metabolites in healthy subjects. Methods Serum L-tryptophan, L-kynurenine, kynurenic acid, and anthranilic acid levels were measured one minute before SRT and at one, 5, 15, 30, and 60 minutes after SRT. We found that SRT affected tryptophan metabolism. Serum levels of L-tryptophan, L-kynurenine, and kynurenic acid were significantly reduced for up to 60 minutes after SRT. Anthranilic acid levels were characterized by a moderate, non significant transient decrease for up to 15 minutes, followed by normalization at 60 minutes. Tryptophan metabolite ratios were moderately altered, suggesting activation of metabolism after SRT. Lowering of tryptophan would generally involve activation of tryptophan catabolism and neurotransmitter, protein, and bone biosynthesis. Lowering of kynurenic acid by SRT might be relevant for improving symptoms in patients with neuropsychiatric disorders, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and depression, as well as certain pain conditions

    Manganese and Parkinson’s Disease: A Critical Review and New Findings

    Get PDF
    The goal of this review was to examine whether chronic Mn exposure produces dopamine neuron degeneration and PD or whether it has a distinct neuropathology and clinical presentation. I reviewed available clinical, neuroimaging, and neuropathological studies in humans and nonhuman primates exposed to Mn or other human conditions that result in elevated brain Mn concentrations. Human and nonhuman primate literature was examined to compare clinical, neuroimaging, and neuropathological changes associated with Mn-induced parkinsonism. Clinical, neuroimaging, and neuropathological evidence was used to examine whether Mn-induced parkinsonism involves degeneration of the nigrostriatal dopaminergic system as is the case in PD. The overwhelming evidence shows that Mn-induced parkinsonism does not involve degeneration of midbrain dopamine neurons and that l-dopa is not an effective therapy. New evidence is presented on a putative mechanism by which Mn may produce movement abnormalities. Confirmation of this hypothesis in humans is essential to make rational decisions about treatment, devise effective therapeutic strategies, and set regulatory guidelines

    Covariation of depressive symptoms, parkinsonism, and post-dexamethasone plasma cortisol levels in a bipolar patient: simultaneous response to ECT and lithium carbonate

    Full text link
    : A patient presented with concurrent mood congruent delusions, parkinsonism, and elevated post-dexamethasone plasma cortisol levels. This triad could result from simultaneous development of cholinergic-monoaminergic dysfunction within critical limbic and extrapyramidal loci. The magnitude of each abnormality decreased in concert during a course of electroconvulsive therapy (ECT). Remaining abnormalities disappeared during treatment with lithium. Actions of ECT and lithium on muscarinic systems are reviewed, and a strategy for testing the hypothesis that dysfunction of cholinergic-monoaminergic mechanisms develops in parallel in different neural networks is considered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66202/1/j.1600-0447.1986.tb06229.x.pd

    Imaging the Dopamine Uptake Site with Ex Vivo [ 18 F]GBR 13119 Binding Autoradiography in Rat Brain

    Full text link
    We studied the binding of [ 18 F]GBR 13119 {1-[[(4-[ 18 F]fluorophenyl) (phenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine} to rat brain with autoradiography after intravenous injection. The rank order of binding was dorsal striatum > nucleus accumbens = olfactory tubercle > sub-stantia nigra = ventral tegmental area > other areas. Binding was blocked by prior injection of dopamine uptake blockers but not by injection of dopamine receptor antagonists or drugs that bind to the dialkylpiperazine site. Unilateral 6-hydroxy dopamine lesions of dopamine neurons caused a marked decrease in striatal and nigral binding on the side of the lesion. We conclude that intravenous injection of [ 18 F]GBR 13119 provides a useful marker of presynaptic dopamine uptake sites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66209/1/j.1471-4159.1990.tb04178.x.pd

    Motor function in Parkinson's disease and supranuclear palsy: simultaneous factor analysis of a clinical scale in several populations

    Get PDF
    BACKGROUND: In order to better understand the similarities and differences in the motor behaviour of different groups of patients, their scores on the Motor Examination section of the Unified Parkinson's Disease Rating Scale (UPDRS) were analysed simultaneously. The three groups consisted, respectively, of patients with Parkinson's disease (PD) on medication, patients with Parkinson's disease withdrawn from anti-parkinsonian medication for at least 12 hours, and patients diagnosed with a specific Parkinsonism syndrome: Progressive Supranuclear Palsy (PSP). METHODS: A total of 669 consecutively sampled patients from three separate hospital-based clinics participated (294 PD on medication; 200 PD off medication: 175 PSP). The Motor Examination section of the UPDRS was administered by neurologists at the three participating clinics. The patient scores on each item were recorded. To assess similarities and differences among the components of the UPDRS in these samples, we performed simultaneous or multigroup factor analysis on the covariance matrices of the three groups. In addition, it was investigated whether a single model for the Motor Examination section of the UPDRS could be developed which would be valid for all three groups at the same time. RESULTS: A single six-dimensional factor solution was found that fitted all groups, although this was not straightforward due to differences between the tremor-at-rest variables. The factors were identified as Tremor-at-rest, Postural Tremor, Axial Dysfunctioning, Rigidity, Left Bradykinesia and Right Bradykinesia. The analysis also pointed to a somewhat lower lateralization in bradykinesia for PSP patients. The groups differed in intensity of motor impairment, especially with respect to Tremor-at-Rest, but the overall relationships between the variables were shared by the three groups. In addition, apart from the common factor structure evidence of differences in body part-specific and motor-specific variances was found. CONCLUSION: From a clinical point of view, the analyses showed that using the Motor Examination section of the UPDRS is also appropriate for patients with PSP, because the correlational structure of the items is directly comparable to that of Parkinson's patients. Methodologically, the analysis of all groups together showed that it is possible to evaluate similarities and differences between factor structures in great detail

    Subregional 6-[18F]fluoro-ÊŸ-m-tyrosine Uptake in the Striatum in Parkinson's Disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In idiopathic Parkinson's disease (PD) the clinical features are heterogeneous and include different predominant symptoms. The aim of the present study was to determine the relationship between subregional aromatic l-amino acid decarboxylase (AADC) activity in the striatum and the cardinal motor symptoms of PD using high-resolution positron emission tomography (PET) with an AADC tracer, 6-[<sup>18</sup>F]fluoro-ÊŸ-<it>m</it>-tyrosine (FMT).</p> <p>Methods</p> <p>We assessed 101 patients with PD and 19 healthy volunteers. PD was diagnosed based on the UK Brain Bank criteria by two experts on movement disorders. Motor symptoms were measured with the Unified Parkinson's Disease Rating Scale (UPDRS). FMT uptake in the subregions of the striatum was analyzed using semi-automated software for region-of-interest demarcation on co-registered magnetic resonance images.</p> <p>Results</p> <p>In all PD patients, FMT uptake was decreased in the posterior putamen regardless of predominant motor symptoms and disease duration. Smaller uptake values were found in the putamen contralateral to the side with more affected limbs. The severity of bradykinesia, rigidity, and axial symptoms was correlated with the decrease of FMT uptake in the putamen, particularly in the anterior part. No significant correlation was observed between tremors and FMT uptake.</p> <p>Conclusions</p> <p>Decrease of FMT uptake in the posterior putamen appears to be most sensitive in mild PD and uptake in the anterior putamen may reflect the severity of main motor symptoms, except for tremor.</p

    Impairment of Gradual Muscle Adjustment during Wrist Circumduction in Parkinson's Disease

    Get PDF
    Purposeful movements are attained by gradually adjusted activity of opposite muscles, or synergists. This requires a motor system that adequately modulates initiation and inhibition of movement and selectively activates the appropriate muscles. In patients with Parkinson's disease (PD) initiation and inhibition of movements are impaired which may manifest itself in e.g. difficulty to start and stop walking. At single-joint level, impaired movement initiation is further accompanied by insufficient inhibition of antagonist muscle activity. As the motor symptoms in PD primarily result from cerebral dysfunction, quantitative investigation of gradually adjusted muscle activity during execution of purposeful movement is a first step to gain more insight in the link between impaired modulation of initiation and inhibition at the levels of (i) cerebrally coded task performance and (ii) final execution by the musculoskeletal system. To that end, the present study investigated changes in gradual adjustment of muscle synergists using a manipulandum that enabled standardized smooth movement by continuous wrist circumduction. Differences between PD patients (N = 15, off-medication) and healthy subjects (N = 16) concerning the relation between muscle activity and movement performance in these groups were assessed using kinematic and electromyographic (EMG) recordings. The variability in the extent to which a particular muscle was active during wrist circumduction – defined as muscle activity differentiation - was quantified by EMG. We demonstrated that more differentiated muscle activity indeed correlated positively with improved movement performance, i.e. higher movement speed and increased smoothness of movement. Additionally, patients employed a less differentiated muscle activity pattern than healthy subjects. These specific changes during wrist circumduction imply that patients have a decreased ability to gradually adjust muscles causing a decline in movement performance. We propose that less differentiated muscle use in PD patients reflects impaired control of modulated initiation and inhibition due to decreased ability to selectively and jointly activate muscles

    Dopamine Signaling Is Essential for Precise Rates of Locomotion by C. elegans

    Get PDF
    Dopamine is an important neuromodulator in both vertebrates and invertebrates. We have found that reduced dopamine signaling can cause a distinct abnormality in the behavior of the nematode C. elegans, which has only eight dopaminergic neurons. Using an automated particle-tracking system for the analysis of C. elegans locomotion, we observed that individual wild-type animals made small adjustments to their speed to maintain constant rates of locomotion. By contrast, individual mutant animals defective in the synthesis of dopamine made larger adjustments to their speeds, resulting in large fluctuations in their rates of locomotion. Mutants defective in dopamine signaling also frequently exhibited both abnormally high and abnormally low average speeds. The ability to make small adjustments to speed was restored to these mutants by treatment with dopamine. These behaviors depended on the D2-like dopamine receptor DOP-3 and the G-protein subunit GOA-1. We suggest that C. elegans and other animals, including humans, might share mechanisms by which dopamine restricts motor activity levels and coordinates movement

    Chronic Methamphetamine Administration Causes Differential Regulation of Transcription Factors in the Rat Midbrain

    Get PDF
    Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning
    • …
    corecore